M1.(a) (i) meter deflects then returns to zero ✓ current produces (magnetic) field / flux ✓ change in field / flux through Q induces emf ✓ induced emf causes current in Q (and meter) ✓ Deflection to right (condone left) then zero is equivalent to 1st mark.
 Accept momentary deflection for 1st point.
 "Change in field / flux induces current in Q" is just ✓ from the last two marking points.

max 3

(ii) meter deflects in opposite direction (or to left, or ecf) ✓ field / flux through P is reduced ✓ induces emf / current in opposite direction ✓ Ignore references to magnitude of deflection.

2

(b) (i) flux linkage (= $n\Phi = nBA$) = 40 × 0.42 × 3.6 × 10⁻³ = 6.0(5) × 10⁻² ✓

> Unit mark is independent. Allow 6×10^{-2} .

Wb turns ✓ Accept 60 mWb turns if this unit is made clear. Unit: allow Wb.

(ii) change in flux linkage = $\Delta(n\Phi)$ = 6.05 × 10⁻² (Wb turns) \checkmark induced emf $\left(=\frac{\Delta(n\phi)}{\Delta t}\right) = \frac{6.05 \times 10^{-2}}{0.50} = 0.12(1)$ (V) \checkmark

Essential to appreciate that 6.05×10^{-2} is change in flux linkage for 1st mark. Otherwise mark to max 1.

[9]

2

[1]

M3.(a) (i) 60 (degrees)
$$\checkmark$$

(ii) angle required is 150° \checkmark
which is 5[#] / 6 [or 2.6(2)] (radians) \checkmark
Correct answer in radians scores both marks.
2
(b) (i) (magnitude of the induced) emf \checkmark
Accept "induced voltage" or "rate of
change of flux linkage", but not
"voltage" alone.
1
(ii) frequency $\left(=\frac{1}{T}\right) = \frac{1}{40 \times 10^{-3}} \checkmark (= 25 \text{ Hz})$
no of revolutions per minute = 25 × 60 = 1500 \checkmark
1500 scores both marks.
Award 1 mark for 40s \rightarrow 1.5 rev min".
2
(iii) maximum flux linkage (=BAN) = 0.55 (Wb turns) \checkmark

angular speed
$$\omega \left(=\frac{2\pi}{T}\right) = \frac{2\pi}{40 \times 10^{-3}} \checkmark (= 157 \text{ rad s}^{-1})$$

M4.D

_			Magnetic Flux and Flux Linkag	е
I	5	а	(magnetic) <u>field</u> is applied perpendicular to path	
			or direction or velocity of	
			charged particles ✓	
			(magnetic) <u>force</u> acts perpendicular to path	
			or direction or velocity of	
			charged particles ✓	
			force depends on speed of particle or on B [or $F \propto v$ or $F = BQv$ explained] \checkmark	max 4
			force provides (centripetal) acceleration towards centre of circle	
			[or (magnetic) force is a	
			centripetal force] ✓	
			$BQv = \frac{mv^2}{r}$ or $r = \frac{mv}{BQ}$ shows that <i>r</i> is constant when <i>B</i> and <i>v</i> are	
I			constant ✓	

5	b	i	radius <i>r</i> of path = $\frac{\text{circumference}}{2\pi} = \frac{27 \times 10^3}{2\pi} = 4.30 \times 10^3 \text{ (m)}$ (allow 4.3	3
			km) ✓	

	centripetal force $\left(=\frac{mv^2}{r}\right) = \frac{1.67 \times 10^{-27} \times (3.00 \times 10^7)^2}{4.30 \times 10^3}$ \checkmark = 3.50 ×	
	10 ⁻¹⁶ (N) ✓	

5	b	ii	magnetic flux density $B \left(= \frac{F}{Qv} \right) = \frac{3.50 \times 10^{-16}}{1.60 \times 10^{-19} \times 3.00 \times 10^7} \checkmark$	3
			= 7.29×10^{-5} \checkmark T \checkmark	

5	С	magnetic field must to increase (centrip [or otherwise proto radius]	: be increased ✓ etal) force or in order to keep <i>r</i> constant ✓ ns would attempt to travel in a path of larger	2
		[or , referring to	, B must increase when v increases to keep	
		r constant]		

M6.B

M7.B

M8.B

M9.D

M10.D

M11.A